Veröffentlichungen
- 2023
- 2305.Schäfers, K., Günther, M., & Sandu, A. (2023). "Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems" .
- 2304.Paulus, A., Pomp, A., & Meisen, T. (2023, Apr.). "The {PLASMA} Framework: Laying the Path to Domain-Specific Semantics in Dataspaces" in Companion Proceedings of the {ACM} Web Conference 2023 , {ACM}
- 2303.Hahn, Y., Langer, T., Meyes, R., & Meisen, T. (2023, Mä.). "Time Series Dataset Survey for Forecasting with Deep Learning" , Forecasting , 5 (1), 315--335. {MDPI} {AG} .
- 2302.Korbmacher, R., Nicolas, A., Tordeux, A., & Totzeck, C. (2023). "Time-continuous microscopic pedestrian models: an overview" .
- 2301.Langer, T., Pomp, A., & Meisen, T. (2023, Apr.). "Towards a Data Space for Interoperability of Analytic Provenance" in Companion Proceedings of the {ACM} Web Conference 2023 , {ACM}
- 2300.Abdellatif, M., Kuchling, P., Rüdiger, B., & Ventura, I. (2023). "Wasserstein distance in terms of the Comonotonicity Copula" .
- 2299.Burghoff, J., Monells, M. H., & Gottschalk, H. (2023). "Who breaks early, looses: goal oriented training of deep neural networks based on port Hamiltonian dynamics" .
- 2298.Beck, C., Jentzen, A., Kleinberg, K., & Kruse, T. (2023). "Nonlinear Monte Carlo methods with polynomial runtime for Bellman equations of discrete time high-dimensional stochastic optimal control problems" .
- 2297.Ehrhardt, M., Kruse, T., & Tordeux, A. (2023). "The Collective Dynamics of a Stochastic Port-Hamiltonian Self-Driven Agent Model in One Dimension" .
- 2296.Bolten, M., MacLachlan, S. P., & Kilmer, M. E. (2023). "Multigrid preconditioning for regularized least-squares problems" .
- 2295.Uhlemeyer, S., Lienen, J., Huellermeier, E., & Gottschalk, H. (2023). "Detecting Novelties with Empty Classes" .
- 2294.Tordeux, A., & Totzeck, C. (2023). "Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems" .
- 2293.Pomp, A., Jansen, M., Berg, H., & Meisen, T. (2023, Apr.). "{SPACE}{\_}{DS}: Towards a Circular Economy Data Space" in Companion Proceedings of the {ACM} Web Conference 2023 , {ACM}
- 2292.Doganay, O. T., Klamroth, K., Lang, B., Stiglmayr, M., & Totzeck, C. (2023). "A new perspective on dynamic network flow problems via port-Hamiltonian systems" .
- 2291.Bauß, J., Parragh, S. N., & Stiglmayr, M. (2023). "Adaptive Improvements of Multi-Objective Branch and Bound" , submitted to EURO Journal on Computational Optimization .
- 2290.Könen, D., & Stiglmayr, M. (2023). "An output-polynomial time algorithm to determine all supported efficient solutions for multi-objective integer network flow problems" . https://arxiv.org/abs/2305.12867 .
- 2289.Blauth, S., Pinnau, R., Andres, M., & Totzeck, C. (2023, Nov.). "Asymptotic analysis for optimal control of the Cattaneo model" , Journal of Mathematical Analysis and Applications , 527 (1), 127375. Elsevier {BV} .
- 2288.Schwonberg, M., Bouazati, F. E., Schmidt, N. M., & Gottschalk, H. (2023). "Augmentation-based Domain Generalization for Semantic Segmentation" .
- 2287.Bauß, J., & Stiglmayr, M. (2023). "Augmenting Bi-objective Branch and Bound by Scalarization-Based Information" .
- 2286.Klass, F., Gabbana, A., & Bartel, A. (2023). "Characteristic Boundary Condition for Thermal Lattice Boltzmann Methods" .
- 2285.Paulus, A., Burgdorf, A., Pomp, A., & Meisen, T. (2023, Feb.). "Collaborative Filtering Recommender System for Semantic Model Refinement" in 2023 {IEEE} 17th International Conference on Semantic Computing ({ICSC}) , {IEEE}
- 2284.Jacob, B., Vorberg, L., & Wyss, C. (2023). "Computing the Quadratic Numerical Range" .
- 2283.Ali, A., Brannick, J., Kahl, K., Krzysik, O. A., Schroder, J. B., & Southworth, B. S. (2023). "Constrained Local Approximate Ideal Restriction for Advection-Diffusion Problems" .
- 2282.Guenther, M., Jacob, B., & Totzeck, C. (2023). "Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain" .
- 2281.Frommer, A., Rinelli, M., & Schweitzer, M. (2023). "Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices" .